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Outline

• Multi-objective evolutionary optimization
Ø NSGA-II: Elitist non-dominated sorting genetic algorithm

• Multi-objective machine learning
Ø Machine learning models and algorithms

Ø Interpretable symbolic rule extraction from neural networks

Ø Multi-objective clustering

Ø Diverse feature extraction 

Ø Communication-efficient federated learning

Ø Multi-objective adversarial learning

• Summary and future work



Multi-objective Evolutionary Optimization
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• One single optimal solution can be found for SOO in most cases, whereas a finite or infinite number equally good 
solutions exist for MOO

• To choose a final solution, user preference is necessary

minimize
A

B

C

Multi-objective optimization (MOO)

Profit

maximize

Risk
minimize

Single and Multi-Objective Optimization



minimize fm (X),  m = 1,2,…, M;
s.t. gj(X) ³ 0, j = 1,2,…, J;

hk(X) = 0, k = 1,2,…,K;
xi

L £ xi £ xi
U ,  i = 1,2,…, n.

Decision space Objective space

x1

x2

x3

f2

f1

Mathematical Description of MOO



• For minimisation problems, solution X(1) dominates X(2) if
– Solution X(1) is no worse than solution X(2) in all objectives: 

" m=1,2,…, M,  fm(X(1)) £ fm(X(2)),  
– Solution X(1) is strictly better than X(2) at least in one objective:

$ m’Î1,2,…, M, fm’ (X(1)) < fm’ (X(2)). 

f 2

f1

C

B

D

A
• A dominates C and D
• B is not dominated by A

minimise

m
inim

ise

Dominance



• The set of all the Pareto optimal solutions is called the Pareto set
• The image of all Pareto optimal solutions in the objective space is termed  Pareto front.

Decision space Objective space

x1

x2

x3

f2

f1

Pareto set Pareto
front

Pareto-Optimal Set and Pareto Front



Regular Pareto Fronts Irregular Pareto Fronts

Shape of Pareto Fronts
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Y. Hua, Q. Liu, K. Hao, and Y. Jin. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA 
Journal of Automatica Sinica, 8(2): 303-318, 2021



• Knee points are solutions on the PoF and need a large compromise in at least one objective to gain a small
improvement in other objectives [1].

• Physical significance:  DàB  or EàB: Much more profit on some objectives but a small unit of decrease on 
other objectives, in other words, it has highest cost performance.

• Geometrical features:
Ø Large exterior angle [1]
Ø Large distance to hyperplane [2]
Ø Large hypervolume [3]

[1] K. Deb and S. Gupta, “Understanding knee points in bicriteria problems and their implications as preferred solution principles,” Engineering Optimization, vol. 43, pp. 1175–1204,
2011.
[2] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol.
3, no. 4, pp. 257–271, 1999.
[3] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary algorithm for many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 761–
776, 2015.
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SOO MOO

Target • Find the global optimal  
solution

• Achieve the Pareto-optimal  
solution set or a representative   
subset

Performance 
Indices

• Accuracy
• Efficiency

• Accuracy
• Spread
• Distribution 
• Efficiency

Problem 
Structure

• Fitness landscape              
(ruggedness, deceptiveness,   
multi-modality, correlation, 
etc.)

• Fitness landscape
(ruggedness, deceptiveness,  
multi-modality, correlation,     
etc.)

• Distribution of the Pareto-
optimal solutions 
(finite/infinite, convexity,  
continuity, curve/surface, etc.)

Differences Between SOO and MOO



• Hypervolume (HV) is able to account for two aspects without a reference set, but the Nadir 
solution need to be defined

- accuracy
- diversity

The larger H is, the better

Performance Indicator: HV

Nadir point

H

f1

f2



• Inverse generational distance (IGD) is able to account for two aspects, if the reference set is large 
enough

- accuracy
- diversity

• Any issues with this performance indicator?

is the minimal distance
between a solution v in 
reference set P* and a 
solution in the achieved 
set P.  

The smaller D is, the better

Performance Indicator: IGD

Reference set (P*)
Achieved set (P)

f1

f2



Initialization

Evaluation

(Parent 
population)

Variations

Evaluation (Offspring 
population)

Environmental
selection

Termination

Representation/coding

Decoding

Mate
selection

Evolutionary Algorithms for Optimization

Evolutionary algorithms and other meta-heuristic search methods are a class of population-based, guided stochastic 
search heuristics inspired from biological evolution and swarm behaviors of social animals

Y. Jin and B. Sendhoff. A systems approach to evolutionary multi-objective structural optimization and beyond. IEEE Computational Intelligence Magazine, 
4(3):62-76, 2009



Challenges in Optimization of Complex Systems 

• Problem formulation
• Large number of decision variables, multi- / many objectives, many constraints
• Optimization in the presence of uncertainties

– Robust optimization
– Dynamic optimization
– Robust optimization over time 

• Computational complexity
– No analytic objective functions available, or data only
– Computationally intensive 
– Experimentally costly

• PlatEMO, a software tool for teaching and research: https://github.com/BIMK/PlatEMO, which contains over 
150 open-source algorithms and 300 benchmark and application problems

Y. Tian, R. Cheng, X. Zhang, and Y. Jin. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence 
Magazine, 12(4): 73-87, 2017 (Winner of the “2019 IEEE CIM Outstanding Paper Award”

https://github.com/BIMK/PlatEMO


• Basic approaches to multi-objective optimization (bi- or three-objective optimization)
– Pareto dominance based approaches
– Decomposition using weight or reference vectors (cf. a scalarizing function)
– Performance indicator based approaches

a) Pareto dominance based                                        b) Decomposition  approaches                                c) Performance indicator                      

Evolutionary Multi-Objective Optimization

K. Deb. Multi-objective optimization using evolutionary algorithms, Wiley, 2005



Many-Objective Optimization

MOPs with more than three objectives are called many-objective optimization problems (MaOPs)
• Dominance based approaches

– Loss of selection pressure in Pareto-based approaches

• Performance indicator based approaches
– Computational costs increases

• Decomposition based approaches
– How many weights / reference vectors are needed to be representative?

• Solution assessment becomes tricky
– The performance become very sensitive and also easily biased
– Solution sets are no loner comparable
– Diversity becomes trickier to measure 

B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM Computing Surveys, 48:13–35, 2015
H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary manyobjective optimization: A short review. In: Proceedings of IEEE Congress on Evolutionary Computation, pages 2419–2426. 
IEEE, 2008
H. Wang, Y. Jin and X. Yao. Diversity assessment in many-objective optimization. IEEE Transactions on Cybernetics, 40(6):1510-1522, 2017



Many-Objective Optimization

Solutions:
• Reduce objective number (this is more problem formulation than optimisation)
• Modify the dominance definition, often by incorporating preferences (bias) decrease the number of 

non-dominated solutions
• Use performance indicator-based methods
• Use secondary selection criteria in addition to dominance
• Use decomposition (using weights, reference points, reference vectors …)

H. Ishibuchi, N. Tsukamoto, and Y. Nojima.Evolutionary Many-Objective Optimization: A Short Review. Proc. of 2008 IEEE Congress on Evolutionary 
Computation, pp. 2424-2431, Hong Kong, June 1-6, 2008.

Solution B is favored if f1-f4 are more important



NSGA-II



• Different to single-objective optimization, the selection strategy must be modified – the 
fitness or rank based selection method is changed to dominance (non-dominated 
sorting) and diversity based selection 

Initialize

Evaluate

(Parent)

Recombine

Mutate

Evaluate (Offspring)

Select

Terminate

Dominance based Selection for MOO



• The basic non-dominated sorting algorithm

– find the non-dominated solutions in the population,
which form the first non-dominated front.
Assign a rank 1 to all solutions of the first front;

– remove the non-dominated solutions and
find again the non-dominated solutions, which belong 
to non-dominated front 2.
Assign a rank 2

– Continue this process until all solutions in the population are assigned to a non-
dominated front 

f1

1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

Non-Dominated Sorting



• Non-dominated sorting

Ø For each solution p, record np (number of solutions that dominate p) and Sp (list 
of solutions that are dominated by p)

f1

1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

Fast Non-Dominated Sorting

p
np (Number
of solutions 
dominate p )

Sp (list of 
solutions 

dominated by 
p )

Ran
k

1 0 {3,5}
2 0 {3,4,5,6,7}
3 2 {5}
4 1 {5}
5 6 {}
6 1 {5}
7 1 {5}



• Non-dominated sorting
– For all solutions p with np=0, assign rank 1 to them, and they form the front 1 in 

the set F1.
– Front counter i=1.

f1

1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

Fast Non-Dominated Sorting

p
np (Number
of solutions 
dominate p )

Sp (list of 
solutions 

dominated by 
p )

Rank

1 0 {3,5} 1
2 0 {3,4,5,6,7} 1
3 2 {5}
4 1 {5}
5 6 {}
6 1 {5}
7 1 {5}



• Non-dominated sorting (i=1)
Ø For each solution p in Fi \\ solutions 1 and 2 in this example

ü For each solution in Sp \\ {3,5} and {3,4,5,6}
np= np  - 1 

Ø For the solutions with np= 0, assign rank i+1, and i=i+1;

f1

1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

Fast Non-Dominated Sorting

p
np (No. of 
solutions 

dominate p )

Sp (list of 
solutions 

dominated by 
p )

Ran
k

1 0 {3,5} 1
2 0 {3,4,5,6,7} 1
3 0 {5} 2
4 0 {5} 2
5 4 {}
6 0 {5} 2
7 0 {5} 2

( np is deduced by 1 for 
solutions 4, 6,7, and by 2 
for solutions 3, 5) 



• Non-dominated sorting (i=2)
Ø For each solution  p in Fi

ü For each solution in Sp
np= np - 1

– For the solutions with np= 0, assign rank i+1, and i=i+1;

f1
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f 2

6
7

front 1
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front 3

Fast Non-Dominated Sorting

p
np (No. of 
solutions 

dominate p )

Sp (list of 
solutions 

dominated by p )

Ran
k

1 0 {3,5} 1
2 0 {3,4,5,6,7} 1
3 0 {5} 2
4 0 {5} 2
5 0 {} 3
6 0 {5} 2
7 0 {5} 2 (Sp is deduced by 4 for solution 5)



Initialize

Evaluate

(Parent)

Recombine

Mutate

Evaluate (Offspring)

Select

Terminate

1. Combine parent   

and offspring      
populations

2. Perform non-dominated
sorting on the combined 
population

Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

3. Calculate the crowding distance
for solutions in the same front. 

Sort   
them in a descending order. 

4. Select the better 

half of the combined
population as the    

parents of the next 
generation 



• Crowding distance: For individuals in each non-dominated front, calculate the average  side 
length of its two neighbouring solutions of solution i , e.g.,

d4 = d’41+d’42;  d’41 = d41 / (f1max – f1min);   d’42 = d42 / (f2max – f2min)
d6 = d’61+d’62;  d’61 = d61 / (f1max – f1min);  d’62 = d62 / (f2max – f2min)

f1min and f1max is the minimum and maximum of f1 in the current front;
f2min and f2max is the minimum and maximum of f2 in the current front;

d41 = |f1(I3) – f1(I6)|, d42 = |f2(I3) – f2(I6)|, 
d61 = |f1(I4) – f1(I7)|, d62 = |f2(I4) – f2(I7)|, 

• Assign a large distance (e.g., infinite) to the extreme solutions -- solutions 1 and 2 for front 1, 
solutions 3 and 7 in front 2, and solution 5 in front 3 

f1

1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

d41

d42

d61

d62

Crowding Distance



In the elitist non-dominated sorting genetic algorithm, crowded tournament
selection is used for choosing two parents to generate offspring:

• Choose two solutions randomly;
• The solution with the better (lower) rank wins, e.g.,          , solution 1 wins; 
• If the solutions have the same rank, the one with the larger crowding distance wins, e.g.,        , 

solution 4 wins; 
• If the two solutions have the same rank and the same crowding distance, choose a winner 

randomly.

1

2

3

4

5

f 2
6
7

front 1
front 2

front 3
d41

d42

d62

d61

1 4

4 6

NSGA-II: Mate Selection: Crowed Tournament Selection



NSGA-II: Environmental Selection

Environmental selection in NSGA-II:

• Combine the parent and offspring population (elitism)

• Perform non-dominated sorting on the combined population

• Calculate the crowding distance for individuals in the same non-dominated front

• Rank the individuals based on the front number in an ascending order

• For individuals in the same front, rank them according to the crowding distance in a descending 
order

• Select N top-ranked solutions out of the 2N solutions in the combined population, where N is the 
population size  



1

2

3

4

5

f 2

6
7

front 1
front 2

front 3

d41

d42

d62

d618

NSGA-II: Environmental Selection: An Example

If 4 solutions are selected from the above eight, 1, 2, 8, 3 or 1,2,8,7 will be selected.



Examples of Real-World Optimization Problems



Hybrid Electric Vehicle Controller Design 

7 Objectives:
• FC: Fuel consumption and CO2
• BS: Battery stress
• OPC: ICE operation changes
• Emission: ICE emissions
• Noise: Perceived ICE noise
• UO: Urban operation
• SOC: Average battery state of charge level

11 Decision variables:
SOCmax (%): SOC threshold to turn off ICE
SOCmin (%): SOC threshold to turn on ICE
v1 (km/h): Lower speed for operation points
v2 (km/h): Upper speed for operation points
rev1 (/min):  ICE speed for operation point 1
torque1 (Nm): Torque for operation point 1
rev2 (/min): ICE speed for operation point 2
torque2 (Nm): Torque for operation point 2
rev3 (/min): ICE speed for operation point 3
torque3 (Nm): Torque for operation point 3
voff (km/h): Speed threshold to turn off ICE



iGNG-RVEA – Hybrid Electric Vehicle Controller 



Multi-Scenario Vehicle Dynamic Optimization

Safe, stable handling and controllability in all driving situations up to vmax

• High level of driving safety including the stability limits 
• Sufficient road and vehicle reaction feedback as well as predictable vehicle behaviours 
• Steady, stable and comfortable straight-line driving behaviour (e.g. under cross-wind, road surface 

profile irregularities) 
• Comfortable and precise steering which provides good feeling for road condition 



Comparative Results



Multi-objective Machine Learning



• Feed-forward neural networks
– Multilayer perceptrons (MLPs)
– Radial-basis-function networks (RBFNs)

• Recurrent neural networks

• Spiking neural networks

• Reservoir computing

• Other models

Basic Artificial Neural Network Models

Feed-forward neural networks

Recurrent neural networks

Spiking neural networks Reservoir computing



Learning Algorithms

• Supervised learning
– Need teaching signals (training samples)
– Often known as function approximation / regression / classification

• Unsupervised learning
– no teaching signal exists
– figure out the structure in the observed information, often known as clustering

• Reinforcement learning

• Semi-supervised learning

• Transfer learning / multi-task learning 

• Weakly supervised learning

• Self-supervised learning 



• Evolutionary learning is 
Ø able to solve non-convex learning problems 
Ø good for both (hyper)-parameter and structure optimization
Ø good for multi-objective machine learning
Ø good for automated machine learning 

Evolutionary Machine Learning

[1] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87 (9):1423-1447, 1999
[2] A.D. Martinez et al. Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons,
recommendations and challenges. Information Fusion, 67:161–194, 2021

Taken from [2]



Spiking neural 
networks

Data 
clustering

Memorizing
and forgetting

ROC curve 
generation

Federated 
learning

Evolutionary Multi-Objective Machine Learning

Scalarized
multi-objective learning

Pareto-based
multi-objective learning

Sparse 
coding

Interpretable 
fuzzy rules

Ensemble 
generation

Neural network
regularization

Support
vector machine

Single objective 
optimization

Multi-objective
optimization

Multi-objective 
machine learning

Feature 
extraction

• Y. Jin and B. Sendhoff. Pareto-based multi-objective machine learning: An overview and case studies. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C: Applications and Reviews, 38(3):397-415, 2008

• Y. Jin (ed.) Multi-objective machine learning. Springer, 2006 

Deep 
learning



Multi-objective Neural Architecture Optimization

• Y. Jin and B. Sendhoff. Pareto-based multi-objective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, 
Part C: Applications and Reviews, 38(3):397-415, 2008

• Y. Jin, B. Sendhoff, and E. Körner. Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations. 
The Third International Conference on Evolutionary Multi-Criterion Optimization. LNCS 3410, pp.752-766, Springer, Guanajuato, Mexico, March 9-11, 2005 



• Tradeoff between accuracy and complexity is inherent to machine 
learning 

• Different objectives in supervised learning
Ø minimizing more than one error function 

v mean squared error
v mean absolute error 

Ø minimize model complexity
v number of hidden nodes
v number of connections

Ø maximize diversity for ensemble generation
v structural diversity
v functional diversity

Ø maximize interpretability for interpretable rule extraction
v number of rules / rule length
v overlap in rules / fuzzy partition 

Accuracy Complexity

Objectives in Supervised Machine Learning

AIC = -2 log(L(q|y, g)) + 2K



• A complexity term is included in the cost function
J = E +  l W

E -- Error function, W -- complexity
l -- hyper-parameter

Ø Need to predefine a proper hyper-parameter

• Gaussian and Laplacian regularizers

Ø Laplacian regularizer is believed to be more effective in reducing complexity 

- Gaussian regularizer - Laplacian regularizer

Learning with Regularization

Gaussian Laplacian



min {f1, f2}

f1 = E;

f2 = W.

E: approximation error, W: complexity 

- Gaussian regularizer

- Laplace regularizer

- number of connections / neurons

- Instead of a single model, multiple models with a spectrum of complexity can be obtained simultaneously

Complexity

Er
ro

r

Pareto-based Regularization



Single- and Multi-objective Evolutionary Learning

(Elitist non-dominated sorting)

(Gradient-based method)

(Node/connection deletion
or addition; weight mutation)

Tournament selection

Fitness evaluation
(Loss function)

Architecture and /or 
parameter crossover/ mutation

Offspring

Termination

Initialization

Evaluation

Parent

Lifetime learning

Loop
Elitist non-dominated sorting
and crowding distance

• Loss function
• Complexity
• Interpretability
• Robustness



• Direct architecture and weight representation
Ø a connection matrix
Ø a weight matrix

• Poor scalability in particular for deep neural networks 

Connection matrix Network architecture

Structure Optimization - Direct Representation



• By analyzing the “accuracy-complexity” Pareto front, we are able to gain deeper 
insights into the learning problem

Ø Identify Pareto-optimal solutions of low complexity from which interpretable rules 
can be extracted

Ø Identify networks that are able to generalize on unseen data

Ø Identify well-performed networks with diverse structures for building ensembles

Analyses of Pareto Front

Y. Jin, R. Grunar, and B. Sendhoff. Pareto analysis of evolutionary and learning systems. Frontiers of Computer Science in China, 3(1):4-17, 2009



Simple Models Are Explainable



BCD data

R1: If x2 ³ 0.5, then malignant;
R2: If x2 £ 0.2, then benign

-0.68g + 0.57 < 0.25 à benign
-0.68g + 0.57 > 0.75 à malignant

g

g = z / (1 + |z|) 
z = 8.21 x2 - 2.33

Rule Extraction Example 1: BCD Data

• Pareto-optimal NN1: only 1 input feature (x2) is chosen, 
4 connections 

If y < 0.25, then benign
If y > 0.75, then malignant

z

• Simplest Pareto-optimal: No input feature is 
chosen, 3 connections 

y = 0.65

• Breast cancer diagnosis (BCD) data, nine attributes, two classes (benign, malignant)



Pareto-optimal NN2: 
• 6 connections
• 3 input features (x2, x4 and x6) are chosen

R1: If  x2 ³ 0.6 Ú x6 ³ 0.9 Ú x2 ³ 0.5 Ù x6 ³ 0.2  Ú
x2 ³ 0.4 Ù x6 ³ 0.4 Ú x2 ³ 0.3 Ù x6 ³ 0.5  Ú
x2 ³ 0.2 Ù x6 ³ 0.7, then malignant;

R2: If x2 £ 0.1 Ù x6 £ 0.4 Ú x2 £ 0.2 Ù
x6 £ 0.2, then benign

(x4 is too weak to play any role in the rules)

Rule Extraction Example 1: BCD Data



Rule Extraction Example 2: Iris Data

• 4 attributes (Sepal-length, Sepal-width, Petal-length, and Petal-width)
• 3 classes (Iris-Setosa, Iris-Versicolor, and Iris-Virginica)
• 150 data samples in total, 50 for each class (40 of which for each class are used in training) 
• 11 networks are obtained



Example 2: The Simplest Network

• Only one attribute is chosen
• Class 1 can be separated form

others, but not class 2 and class 3
• 8 connections

Rule: If x3 < 2.2, Then  Iris-Setosa



Example 2: Second Simplest Network

R1: If x3 < 2.2 Ù x4 < 1.0,
Then Iris-Setosa;

R2: If x3 > 2.2 Ù x4 < 1.4,
Then Iris-Versicolor;

R3: If x4 > 1.8, Then Iris-Virginica, 

• Only two attributes are chosen
• All classes can be separated correctly

Iris-Setosa Iris-Versicolor
Iris-Virginica

x1

x2

x3

x4



Schmidt M., Lipson H. (2009) "Distilling Free-Form Natural Laws from Experimental Data," Science, Vol. 324, no. 5923, pp. 81 - 85

A Full-Length Science Paper



Selection of Generalizable Models 



NPG

Training data

• The complexity that matches the data is the one that reaches maximal normalized 
performance gain (NPG):

Test data

Identifying Networks That Can Generalize

Knee point



Breast Cancer Data Diabetes Data

Training

Test

Identifying Networks That Can Generalize 

Models that can 
generalize

Models that can 
generalize

Run 1:

Run 2:



J. Handl and J. Knowles. (2005)  Exploiting the trade-off -- the benefits of multiple objectives in data clustering.  Proceedings of the Third International Conference on Evolutionary 
Multi-Criterion Optimization (EMO 2005).  Pages 547-560. LNCS 3410

Multi-objective Clustering



Multi-Objective Clustering - Objectives

Pareto-based multi-objective clustering has shown to be helpful for 
determining the number of clusters (Handl and Knowles, 2005)
• Two objectives

Ø Cluster compactness, described by overall deviation 

Ø Cluster connectivity, expressed by the degree to which neighboring data points are grouped 
in the same cluster



Multiobjective Clustering - Coding

Coding: locus-based adjacency scheme

Sub-graphs need to be detected and data items in the same sub-graph are 
grouped in the same cluster



Multiobjective Clustering - Crossover



Multiobjective Clustering - Mutation



Multi-Objective Clustering - Example

• Data set: Square1

Largest minimal 
distance with 4 clusters

Connectivity deviation tradeoff Attainment score of the Pareto-optimal solutions

• Analysis of Pareto-optimal solutions 
– Calculate attainment score (maximum distance between solution and control)



Multi-Objective Feature Extraction

W. A. Albukhanajer, J. A. Briffa and Y. Jin. Evolutionary multi-objective image feature extraction in the presence of noise. IEEE Transactions on Cybernetics, 
45(9):1757-1768, 2015. 
W. A. Albukhanajer, Y. Jin, J. A. Briffa. Classifier ensembles for image identification using multi-objective Pareto features. Neurocomputing, 238:316-327, 
2017. 
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Trace Transform for Feature Extraction



Trace Transform for Feature Extraction



Parameters and functionals can be optimised using an evolutionary multi-objective optimisation algorithm

Evolutionary Trace Transform



Initialize

Evaluate

(Parent)

Recombine

Mutate

Evaluate (Offspring)

Select

Terminate

4. Crowded 

Non-dominated 
sorting1. Merge

2. Non-dominated
sorting

3. Crowding

distance 
sorting

Evolutionary algorithm
Elitist non-dominated sorting and selection

Multi-objective Optimization Algorithm
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1. Minimize the within-class feature variance (Sw)
2. Maximize the between-class feature scatter (Sb)

Criteria for Image Feature Extraction



• Single features

• Paired features 

Parameter Encoding



Fish-94 Database COIL-20  Database

Image Database



• How can we evolve Trace transforms that are robust to noise in addition to RST 
transformations?

Images with salt and pepper noise.

Robustness to Noise



• NSGA-II

• Training samples

ETT

• Sample 1: A low-resolution image (64 x 64) 
generated from a randomly chosen original image 
(256x256);

• Sample 2: Random rotation [1°-359°] of Sample 1;
• Sample 3: Random translation of Sample 1 (objects 

remain within image boundaries);
• Sample 4: Random scale (0.1-0.9) of Sample 1.

• Sample 1: A low-resolution image from 
(64x64) generated from a randomly chosen 
original image (256x256);

• Sample 2: Random rotation, scale and 
translation of Sample 1 with Gaussian noise 
(standard deviation=4);

• Sample 3: Random rotation, scale and 
translation of Sample 1 with Gaussian noise 
(standard deviation=6);

• Sample 4: Random rotation of Sample 1;
• Sample 5: Random scale of Sample 1.

ETTN

Parameter Setting



Features extracted by ETT Features extracted by ETTN

Extracted Pareto Optimal Features



Traditional ensembles Ensembles using Pareto optimal features

Ensemble with Pareto Optimal Features



Multi-Objective Evolutionary Federated Learning

H. Zhu and Y. Jin. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems, 31(4): 1310-1322, 2020



Privacy-Preserving Federated Learning



Privacy-Preserving Federated Learning

• Federated learning is a machine learning setting where the goal is to train a high-quality centralized model with 
training data distributed over a large number of clients, each with unreliable and relatively slow network 
connections.

Horizontal federated learning Vertical federated learning

DB1

DB3

DB2

DB1

DB2



Main Challenges in Federated Learning

• Extra communication cost, computation power and storage capacity are required

• The data on each edge device
– Class labels may be imbalanced
– Attributes may not be  independent and identically distributed (Non-IID)
– Attributes may be vertically partitioned 

• Vulnerable to adversarial attacks

• Not all clients may participate in learning in each round, and the number of clients may be huge, and 
the clients may be heterogeneous in computation and communication power

H. Zhu, J. Xu, S. Liu and Y. Jin. Federated learning on non-iid data: A survey. Neurocomputing, 465: 371-390, 2021



Bi-Objective Federated Learning

• Objectives
– Maximization of the learning performance of the central model
– Minimization of the communication cost

• Decision variables

– The hyperparameters, such as learning rate, batch size

– Parameters of the deep neural network

– Structure of the deep neural network

• How to encode deep neural networks such as CNN and MLP? 



Scalable Encoding of Neural Connectivity

• Encoding of deep neural networks is extremely challenging since it involves a very large number if decision 
variables

• A modified sparse evolutionary training (SET) is adopted: 
– Use a Erdos Rnyi random graph  to determine the connectivity between every two neighboring layers of the 

neural network

– where nk and nk−1 are the number of neurons in layer k and k − 1, respectively, Wk
ij is the sparse weight matrix 

between the two layers, ε is a SET parameter that controls connection sparsity, and nW is the total number of 
connections between the two layers

– It is easy to find that the connection probability would become significantly lower, if ε ≪ nk and ε ≪ nk−1 

– remove a fraction ξ of the weights that have updated the smallest during each training epoch, which can be 
seen as the selection operation of an evolutionary algorithm

– Removal is applied at the last SGD iteration only

H. Zhu and Y. Jin. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems, 31(4): 1310-1322, 2020



Genetic Representation

MLP CNN



Bi-Objective Federated Learning

• Minimize the following two objectives using NSGA-II



Experimental Settings

• The standard FL: MLP and CNN on the MNIST data
– MLP: a learning rate of 0.1 and the batch size is 50; 
– two hidden layers, each having 200 nodes (199,210 parameters in total) and uses the ReLu function as the 

activation function

– CNN: two 3× 3 kernel filters (the first with 32 channels and the second with 64 channels)
– a 2×2 max-pooling layer, a 128 fully connected layer and finally a 10 class softmax output layer (1,625,866

parameters in total)
– 100 clients, mini-batch size = 50, training epoch = 5

• For the evolutionary FL:
– Population size =20, generation = 20 for IID data and 50 for non-IID data
– Communication round = 5 for IID data and 10 for non-IID data
– ε = 20 and ξ = 0.3 (for comparison)



Influence of the Connectivity

ε = 20 and ξ = 0.3



Results



Results



Search for Robust Neural Architectures 



Adversarial Robustness of Deep Neural Networks 

• Deep neural networks are vulnerable to carefully designed adversarial attacks

• Fast Gradient Sign Method (FGSM) 

Adversarial example: * ( ( , , ))xsignx J x yx qÑ= + ×Úe
(Goodfellow et al., 2015)



White-box Attacks

Various adversarial attacks on Inception V3

White-box attacks assume that the 
adversary knows detailed information 
of the targeted models

• model architecture
• hyper-parameters
• gradients
• training data

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: CVPR 2016, pp. 2818–2826.



Adversarial Robustness by Design

• Most existing work investigate the robustness of various deep learning models under a particular 
type of attack 

• Is it possible to search for neural architectures that are robust to multiple adversarial attacks?

• Objectives
Ø Accuracy on clean data
Ø Robustness to five types of white-box attacks



Adversarial Robustness by Design

• It will be computationally extremely intensive to evaluate the performance of all candidate 
architectures on the clean data and four white-box and one black-box adversarial data sets

• One of the five attacks is randomly selected in each assessment to reduce the computational cost, 

• To make the adversarial performances comparable, the adversarial error is normalized over the 
performance of 18 baseline DNN architectures 

Errad the error rate on adversarial examples 
generated from a randomly selected type of 
adversarial attack, µi and si and are the mean 
and the standard deviation of the error rate of 
different baseline architectures under the i-th
adversarial attack

J. Liu and Y. Jin. Multi-objective search of robust neural architectures against multiple types of adversarial attacks. Neurocomputing, 453: 73-84, 2021



Neural Network Representation (Micro Search Space)
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Overall Framework



Comparative Results



Multi-Fidelity Multi-objective Search of 
Robust Neural Architectures 

J. Liu, R. Cheng, Y. Jin. Bi-fidelity evolutionary multi-objective search for adversarially robust deep neural architectures. arXiv preprint arXiv:2207.05321



Motivations – Enhance Computational Efficiency

• To accelerate the search process, we predict the performance of candidate architectures by combining 
weight sharing with a predictor-based evaluator, where the parameters directly inherited from a trained 
robust supernet, and the performance calculated from a partial validation set (20%) is used as a low-fidelity 
fitness evaluation

• We calculate the performance of architecture on the entire validation set as the high-fidelity fitness 
evaluation and a surrogate model is built from the high-fidelity fitness evaluation and used to approximate 
the high-fidelity fitness function

• A three-objective optimization problem is formulated to further enhance the efficiency in search for 
adversarially robust DNNs, where the performance predicted by a surrogate model is introduced as a third 
objective, called auxiliary objective

denote the low-fidelity fitness evaluations 
calculated by the error rate on the partial validation set;

represents the auxiliary-objective which is predicted 
by the surrogate model



Network Representation



Overall Framework



Comparative Results

The maximum computing time is set to 3 GPU days

Pareto fronts obtained by comparative 
experiments, where the parameters are 
inherited from the supernet

The performance of architectures 
obtained by comparative experiments 
after adversarial training from scratch.



Comparative Results



Summary

• Multi-objective machine learning based on Pareto-optimality provides novel perspectives on 
machine learning

• Models of different qualities (accuracy, complexity, interpretability, robustness, and fairness) are 
of great interest and deserves more attention in machine learning

• The Pareto-front achieved by evolutionary multi-objective algorithms reveals important  
information of the problem at hand


